Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm Mimoun Mohamed ^{1, 2} François Malgouyres ³ Valentin Emiya ¹ Caroline Chaux ⁴

¹Aix Marseille Université, CNRS, LIS, Marseille, France ² Aix Marseille Université, CNRS, I2M, Marseille, France ³Université de Toulouse, CNRS, IMT, Toulouse, France ⁴CNRS, IPAL, Singapour

Summary

- Need a better understanding of the Straight-Through Estimator (STE) initially proposed for quantization in neural networks [\[1,](#page-0-0) [2\]](#page-0-1)
- **Propose a sparse support recovery** algorithm by deriving the STE
- 1. Enhanced exploration capability beyond local minima
- 2. Superior performance with highly-coherent dictionaries (spike deconvolution)
- 3. Theoretical guarantees for sparse recovery
- 4. Can be warm-started with state-of-the-art algorithms

Goal Recover $S^* = \text{supp}(x^*)$ from $y = Ax^* + e \in \mathbb{R}^m$ with $x^* \in \mathbb{R}^n$ s.t. $||x^*||_0 \leq k$ and $A \in \mathbb{R}^{m \times n}$ **Optimization problem** *x*∈ \mathbb{R}^n , $||x||_0$ ≤ k

Straight-through estimator *[∂]*(*^F* ◦ *^H*) *∂*X $(\mathcal{X}) = \frac{\partial F}{\partial \Omega}$ *∂x* $(H(\mathcal{X}))$ ^{$\frac{\partial x}{\partial x}$} *∂***X** $(\mathcal{X}) \approx$ *∂F ∂x* $(H(\mathcal{X}))$

Sparse support recovery

Minimize

 $F(x) :=$

1

 $||Ax - y||_2^2$

2

2

Problem reformulation with a sparsification operator *H*

$$
\underset{\mathcal{X} \in \mathbb{R}^n}{\text{Minimize}}\,F\left(H\left(\mathcal{X}\right)\right) \quad \text{with} \quad H\left(\mathcal{X}\right) \in \underset{\text{supp}(x)}{\underset{x \in \mathbb{R}^n}{\arg\!\min}}\,\frac{1}{2}\|Ax-y\|_2^2\\ \text{supp}(x) \subseteq \text{largest}_k(\mathcal{X})
$$

Straight-Through Estimator for sparsification

Differentiate $F(x) = F(H(X))$ where H is non-differentiable ?

Gradient update:
$$
\mathcal{X}^{t+1} = \mathcal{X}^t - \eta \frac{\partial F}{\partial x}(H(\mathcal{X})) = \mathcal{X}^t - \eta A^T(Ax^t - y)
$$

Support Exploration Algorithm (SEA)

Main idea: Support exploration variable \mathcal{X}^t searches for S^*

Algorithm 1 SEA [\[3\]](#page-0-2) 1: Initialize \mathcal{X}^0

2: repeat

- 3: $S^t = \text{largest}_k(\mathcal{X}^t)$
- 4: $x^t = \text{argmin } ||Ax y||_2^2$ *x*∈R *n* supp(*x*)⊂*S t* 2
- 5: $\mathcal{X}^{t+1} = \mathcal{X}^t \eta A^T (Ax^t y)$

6: until halting criterion is *true* 7: $t_{BEST} = \text{argmin} ||Ax^{t'} - y||_2^2$ 2

> Figure 3. Empirical support recovery phase transition curves. Problems below each curve are solved by the algorithms with a success rate larger than 95% over 1000 runs

 0.4

 $\zeta = m/n$

0.6

0.8

Algorithm 2 HTP [\[4\]](#page-0-3) 1: Initialize *x* 0 2: repeat 3: $S^t = \text{largest}_k(x^t)$ 4: $x^t = \text{argmin } ||Ax - y||_2^2$ *x*∈R *n* supp(*x*)⊂*S t* 2 5: $x^{t+1} = x^t - \eta A^T (Ax^t - y)$ 6: until halting criterion is *true* 7:

Figure 1. x^* and y with the solutions provided by the algorithms when $k = 20$

Figure 2. Average support distance $supp_{dist}(x) = \frac{k - |S^* \cap supp(x)|}{k}$ $\frac{\text{supp}(x)}{k}$ between S^* and the support of the solutions provided by the algorithms over 200 run: $\mu(A) = 0.97$, $\sigma = 3$

Phase transition diagram with $A, x^*_{|S^*} \sim \mathcal{N}(0, 1)$

$$
0.35 \rightarrow \text{SEA}_{ELS} \rightarrow \text{IHT}_{ELS} \rightarrow \text{HTP}_{ELS}
$$
\n
$$
0.30 \rightarrow \text{SEA}_{OMP} \rightarrow \text{IHT}_{OMP} \rightarrow \text{HTP}_{OMP}
$$
\n
$$
0.30 \rightarrow \text{SEA}_{0} \rightarrow \text{IHT} \rightarrow \text{IHT} \rightarrow \text{IHT}
$$

ELS

OMPR

0.2

OMP

0.25

0.20

 ~ 0.15

 0.10

0.05

 0.0

Contract

 k/m

References

[1] G. Hinton. Neural networks for machine learning. Coursera, video lectures, 2012. Lecture 15b.

[2] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural networks. *NeurIPS*, 2016.

[3] M. Mohamed and F. Malgouyres and V. Emiya and C. Chaux. Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm. *ICML*, 2024.

[4] S. Foucart. Hard thresholding pursuit: An algorithm for compressive sensing. *SIAM J. Numer. Anal.*, 2011.

[5] E. Candes and T. Tao. Decoding by linear programming. *IEEE Trans. Inf. Theory*, 2005.

Theorem - Recovery with RIP assumption

Upper bound on the number of iterations for sparse recovery

Assume A satisfies the $(2k + 1)$ -RIP [\[5\]](#page-0-4) and $||A_i||_2 = 1$. If x^* satisfies

$$
\alpha_k^{\rm RIP} \|x^*\|_2 + \gamma_k^{\rm RIP} \|e\|_2 < \frac{\min_{i \in S^*} |x_i^*|}{2k}
$$

 $\overline{}$

then for all \mathcal{X}^0 , η , there exists $t_s \leq T_{\scriptscriptstyle RIP}$ such that $S^* \subseteq S^{t_s}$, where $\|\mathcal{X}^0\|_{\infty}$

$$
T_{RIP} = \frac{2k\frac{\|\mathcal{X}^{0}\|_{\infty}}{\eta} + (k+1)\min_{i \in S^{*}} |x_{i}^{*}|}{\min_{i \in S^{*}} |x_{i}^{*}| - 2k\left(\alpha_{k}^{RIP} \|x^{*}\|_{2} + \gamma_{k}^{RIP} \|e\|_{2}\right)}
$$

Exact support recovery

If moreover,
$$
x^*
$$
 is such that $\min_{i \in S^*} |x_i^*| > \frac{2}{\sqrt{1 - \delta_{2k}}} ||e||_2$, and SEM performs

more than T_{RIP} iterations, then $S^* \subseteq S^{t_{BEST}}$ and $\|x^{t_{BEST}} - x^*\|_2 \leq \frac{2}{\sqrt{1-\epsilon}}$ 1−*δ^k* $||e||_2$

Gaussian deconvolution with $x^*_{|S^*} \sim \mathbb{U}([-2, -1] \cup [1, 2])$

