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Abstract—In order to reduce the quadratic cost of matrix-
vector multiplications in dense and attention layers, Monarch ma-
trices have been recently introduced, achieving a sub-quadratic
complexity. It consists in factorizing a matrix using fixed per-
mutations and learned block diagonal matrices, at the price of a
small performance drop. We propose a more general model where
some permutations are learned. The optimization algorithm
explores the space of permutations using a Straight-Through
Estimator (STE) inspired by the support exploration algorithm
designed for sparse support recovery. Our experimental results
demonstrate performance improvement in the context of sparse
matrix factorization and of end-to-end sparse learning.

Index Terms—monarch matrix, straight-through estimator,
matrix factorization, sparse learning, permutation.

I. INTRODUCTION

Matrices are ubiquitous in signal processing and machine
learning, for data storage or linear mapping. Since they are
responsible for computational and storage bottlenecks, exten-
sive research has been dedicated to overcoming these limits.
Sparse Matrix Factorization. Sparse matrix factorization has
been extensively studied for this purpose, with many models
such as multilayer sparse matrix factorizations [1], [2] and
Butterfly factorizations [3]–[5]. They are classes of structured
matrices that can represent all relevant linear maps with low
space and time complexity, along with efficient approximation
and projection algorithms. More recently, the authors in [6]
introduced the Monarch model, as a product of block-diagonal
and permutation matrices. This model has been implemented
in Monarch Mixer layers for neural networks. Both Butterfly
and Monarch factorizations involve permutations, which are
fixed [6] or chosen from a small candidate subset [4]. We
propose to fully learn these permutations to further enhance
the expressivity of sparse factorization models.
A Straight-Through Estimator to Learn Permutations.
Learning permutations is a challenging task. General-purpose
combinatorial algorithms, such as those involving the Sinkhorn
operator [7], [8], require large datasets for training and are
often task-specific. Relaxations, as they also need Sinkhorn
operator [9], suffer from similar limitations. We propose
to learn permutations using the Straight-Through Estimator
(STE) principle [10], [11], a technique used to replace the
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gradient of a non-differentiable operator during backpropa-
gation. STE is known for its empirical successes in binary
and quantized neural networks [12], [13] and has been more
recently applied to linear sparse problems [14]. When used
to learn permutations for aligning multiple neural networks
[15], it typically incurs a high computational overhead. In this
paper, we propose an STE to learn permutations with low
computational overhead.
Contributions and organization of the paper. After a brief
technical introduction to Monarch matrices and STE in sec-
tion II, section III presents the proposed generalized model
and the corresponding iterative estimation procedure. To our
knowledge, this is the first time an STE has been derived to
learn permutations in a matrix factorization framework. The
effectiveness of the proposed approach is demonstrated in sec-
tion IV in two case studies: sparse matrix factorization, where
the approach reduces the approximation error in dimensions
up to 100; and end-to-end sparse learning, where our model is
used as a layer in a neural network for classification, achieving
a significant accuracy improvement over the existing Monarch
factorization. We also provide details on the computational
complexity and running times, showing that the performance
gains are achieved with minimal computational overhead.
Finally, conclusions are drawn in section V, including a discus-
sion on the current work’s limitations in learning permutations.

II. PRELIMINARIES

A. Monarch factorization

Monarch matrices [6], [16] can replace dense matrices by
a factorization that provides a lower time and space complex-
ity when used for matrix multiplication, e.g., in dense and
attention layers. In its most general form, an order-p Monarch
matrix is structured as a product M =

∏p
i=1 (PiBi)P0 that

alternates permutations Pi and block-diagonal matrices Bi. In
practice, existing works [6], [16] have focused on the model

M = P2LP1RP0 (1)

where M ∈ RN×N , P0, P1, P2 are fixed permutations, and
L,R ∈ BD(N) are block-diagonal matrices composed of n
blocks of size n×n, with n2 = N . The model with P0 = IN
the identity matrix and P1 = P2 = P̄ a ‘base n’ variant of
the bit-reversal permutation has been studied in [6], while the
model with P0 = P1 = P2 = P̄ has been used in [16]. In both
cases, the resulting time and space complexity is in O

(
N

3
2

)
.



For any matrix A ∈ RN×N , [6] introduced an O(N 5
2 )-time

algorithm solving the projection problem on the set M(N) of
Monarch matrices with P0 = IN and P1 = P2 = P̄ :

(L̃, R̃) = πM(A) ∈ argmin
L,R∈BD(N)

1

2
∥P̄LP̄R−A∥2F (2)

We denote pM(A) = P̄ L̃P̄ R̃ the resulting Monarch matrix. A
similar projection addresses the case P0 = P1 = P2 = P̄ [16].

B. Straight-Through Estimator (STE)

Let us consider an optimization problem of the form:

Minimize
x∈S

F (x) (3)

where F : D → R is a differentiable function and S is a
subset of the domain D of F , acting as a constraint on the
solution, and making the optimization problem difficult. For
instance, F may be a loss function, x the parameter vector to
be learned, and S the set of vectors of D quantized on k-bit,
or the set of k-sparse vectors in D, for some integer k. Let us
replace problem (3) by the unconstrained problem

Minimize
X∈D

F (H (X )) (4)

where H : D → S is a non-differentiable function. Assuming
H is surjective, the minima of problems (3) and (4) coincide.
One may address problem (4) using a descent strategy based
on the computational graph

X H x F loss

Since ∂H
∂X is not defined, one may replace the gradient-

descent update X ← X − η ∂F◦H
∂X |X by X ← X − η ∂F

∂x |x, for
some learning rate η > 0. This comes from the approximation
of the chain rule ∂F◦H

∂X |X = ∂F
∂x |x

∂H
∂X |X ≈

∂F
∂x |x known as the

STE principle [10], [11]. It has been widely and successfully
used for quantification in neural networks [12], [13] and more
recently for sparsification in linear systems [14].

III. PROPOSED METHOD

A. Generalizing Monarch Factorization

As mentioned in section II-A, the approximation of a matrix
by a Monarch structure P2LP1RP0 has only been performed
with fixed permutations P0, P1, P2 and by optimizing over
block-diagonal matrices L and R. Our objective is to study
the opportunity to optimize over some permutations too, to
increase the expressivity of the model. Optimizing over a
permutation is generally a difficult, combinatorial task. We
propose to learn the permutations P0 and P2 while keeping
P1 fixed. By denoting by PN the set of N ×N permutation
matrices, the optimization problem of interest writes:

Minimize
L,R∈BD(N)

P0,P2 ∈PN

1

2
∥P2LP̄RP0 −A∥2F . (5)

We reformulate Problem (5) using Proposition 1, (keeping
P1 = P̄ fixed to benefit from the projection pM onto the set
of Monarch matrices):

Proposition 1. Let A ∈ RN×N and define

F :

{
PN × PN → R
(P0, P2) 7→ 1

2∥pM(P̄PT
2 APT

0 )∥2F
Then, problem (5) is equivalent to

Minimize
P0,P2 ∈PN

F (P0, P2). (6)

Proof. Since P0, P2, P̄ are orthogonal matrices, we have

min
L,R∈BD(N)

P0,P2 ∈PN

1

2
∥P2LP̄RP0 −A∥2F

= min
L,R∈BD(N)

P0,P2 ∈PN

1

2
∥P̄LP̄RP̄ − P̄PT

2 APT
0 ∥2F

= min
P0,P2 ∈PN

F (P0, P2).

B. Proposed algorithm

Our algorithm is an alternate scheme to minimize
F (P0, P2). To design an STE principle to optimize F over
permutation matrices, Proposition 2 reformulates the problem
as in (4), introducing dense variables X0,X2 and a mapping h.

Proposition 2. For X0,X2 ∈ RN×N , let H(X0,X2) =
(h(X0), h(X2)) with h : RN×N → PN a surjective mapping.
Then problem 6 is equivalent to

Minimize
X0,X2 ∈RN×N

F (H(X0,X2)) (7)

Proof. Since h is surjective, the image of H is PN ×PN and
the minima of F on PN × PN and of F ◦H coincide.

By considering X0 and X2 as cost matrices, h can be chosen
as any algorithm solving the well-known linear assignment
problem. We use the aggressive auction algorithm [17] for
its recognized performance. It is a surjective mapping since
h(P ) = P for any P ∈ PN .

We propose algorithm 1 called STE Alternate Minimization
for Monarch (STEAM4Monarch) to compute an approximate
solution of problem (7). It implements an STE-based back-
propagation procedure on the computational graph

X0 h P0

X2 h P2

F loss

STEAM4Monarch alternates between STE-based updates of
Xi for i ∈ {0, 2} (line 9) with a step size controlled by
the Lipschitz modulus of the gradient (line 8). This update is
similar to a gradient step where the gradient ∂F◦H

∂Xi
|(X0,X2) =

∂F
∂Pi
|(P0,P2)

∂h
∂Xi
|Xi is approximated by:

∂F

∂Pi
|(P0,P2) =

∂

∂Pi

1

2
∥P2LP̄RP0 −A∥2F

=

{
(P2LP̄R)T (P2LP̄RP0 −A) if i = 0,

(P2LP̄RP0 −A)(LP̄RP0)
T if i = 2.



Permutation Pi is then computed from Xi (line 10) and
block-diagonal factors L and R are obtained from the Monarch
projection (line 11) based on proposition 2 and problem (6).

A natural initialization consists in setting P0, P2,X0,X2 to
P̄ and in using the Monarch projections for L and R (lines 4-
5). The best variables encountered through the procedure
are returned (line 16) since the objective function may not
decrease at each iteration. Indeed, as detailed in [14] for sparse
recovery, we have exploratory variables Xi that accumulate
gradients along iterations, which is useful to explore the set
of permutations and to escape from local minima. A typical
behavior is represented in fig. 1.
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Fig. 1. Relative Frobenius error as a function of the iteration, in the setting
of section IV-A, with N = 49. The dashed red line indicates tBEST .

Algorithm 1 STEAM4Monarch
1: Input: Matrix A

2: Output: Factors P̃2, L̃, R̃, P̃0 of Â = P̃2L̃P̄ R̃P̃0

3: t← 1

4: P0, P2,X0,X2 ← P̄

5: (L,R)← πM(APT
0 )

6: loop T times
7: for i ∈ {0, 2} do
8: η ← 1

α∥LP̄R∥2
2

9: Xi ← Xi − η ∂
∂Pi

1
2∥P2LP̄RP0 −A∥2F

10: Pi ← h(Xi)

11: (L,R)← πM(P̄PT
2 APT

0 )

12: end for
13: Lt, Rt, P t

0 , P
t
2 ← L,R, P0, P2

14: t← t+ 1

15: end loop
16: tBEST = argmin

t′∈J1,tK
∥P t′

2 Lt′ P̄Rt′P t′

0 −A∥F

17: Return: P tBEST
2 , LtBEST , RtBEST , P tBEST

0

Each iteration of our algorithm involves a few matrix
multiplications, with more than half involving permutations,
with a matrix multiplication time complexity of O(N2). The
remaining products can be rearranged to include a block-
diagonal factor, leading to a time complexity of O(N5/2). The
time complexity of the projection πM is O(N5/2). The best
theoretical worst-case complexity of an assignment algorithm
[18] is O(N5/2 logNC), C = ∥X∥∞. However [19] shows
that the experimental complexity of the auction algorithm is
typically lower, with its best-case complexity being O(N2).

Furthermore, after the first iteration, we initialize the auction
algorithm with elements from its previous instance. It is known
[20] that such a strategy significantly reduces computation
time. Thus, the overall running time of our algorithm largely
depends on the empirical performance of the auction algo-
rithm. In the worst case it stays sub-cubic, like Monarch
projection.

IV. NUMERICAL EXPERIMENT

We study the performance of our approach against the
original Monarch factorization with fixed permutations. First,
we examine the ability of models and algorithms to fit a matrix
generated from the true model (1). Then, we illustrate their
learning capacity in a supervised learning task. Experiments
were conducted on a single CPU, with Python code available
at https://gitlab.lis-lab.fr/valentin.emiya/steam4monarch.

A. Sparse matrix factorization

In this experiment, we randomly generate matrices M
from the true model eq. (1). The block-diagonal entries of
L and R are drawn independently from the standard normal
distribution; P2 is uniformly drawn from PN ; and P0 is either
set to IN , or uniformly drawn from PN . We vary the matrix
size N ∈ {n2 |n ∈ J2, 10K}, with r = 1000 runs for each
value of N . Solutions are estimated from the original Monarch
projection; from the proposed Algorithm 1 (skipping the inner
loop for i = 0 in the case P0 = IN ), with α = 1.001
and T ∈ {100, 1000} iterations; and from a pure random
exploration strategy. In the latter, random permutations are
uniformly drawn T times from PN , followed by a Monarch
projection to estimated L and R, and the best encountered
factorization is returned.

The performance is reported in fig. 2 using the Relative
Frobenius Error ∥M̂−M∥F

∥M∥F
between M and the approximation

M̂ returned by each algorithm, as a function of N . Our
algorithm significantly outperforms the Monarch projection
for all considered matrix sizes N . The largest difference is
observed in the lower dimensions while increasing the number
of iterations in our algorithm improves its performance. The
pure random strategy is not represented since it achieves
very poor performance, above 1 almost everywhere. We have
also conducted a similar factorization experiment where the
observed matrix has i.i.d. gaussian entries: results are sim-
ilar as in fig. 2 with better approximation performance for
the proposed approach. This experiment suggests that our
approach is able to provide an better factorization than the
Monarch projection but that exploring the permutation space
is a difficult task. Indeed, our algorithm does not generally
retrieve the best permutation, it performs better when one
permutation is searched (case P0 = IN ) than in the more
difficult case with two unknown permutations. Yet it is able
to find good permutations compared to a pure exploration
strategy that fails to return interesting factorizations.

https://gitlab.lis-lab.fr/valentin.emiya/steam4monarch
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Fig. 2. Relative Frobenius Error for various factorizations as a function of
the matrix size N . M is randomly generated from eq. (1) with P0 = IN
(left) or P0 ∈ PN (right). 99% confidence interval are very narrow (shaded
areas, hardly visible when zooming).

B. End-to-end sparse learning

To compare the learning capability of our model with the
Monarch model, we propose an end-to-end learning setting
inspired from [6]. We perform the classification task on the
MNIST dataset [21] with the original train/test split, using a
multilayer perceptron (MLP) with a hidden layer of size 784,
a ReLU activation, and a LogSoftmax decision layer before
computing a negative log-likelihood loss. We train this MLP
using first-order optimizers Adadelta [22] and AdamW [23]
for 30 epochs. Then, we repeat the training process from
scratch by replacing the 784×784 dense matrix of the hidden
layer either by a Monarch factorization or by the proposed
factorization, represented by the computational graph

input × × × × × output

R LP0 P̄ P2

X0 X2

h h

Since there is no observed matrix to be factorized, the Monarch
projection and Algorithm 1 are not applicable. However, the
STE can be used to backpropagate gradients through h and our
factorization – and the Monarch factorization – can be trained
in the same manner as the MLP. We focus on cases where we
learn, along with L and R, either P0 and/or P2. When learned,
P0 and P2 are initialized to IN . Otherwise, they are set to P̄ .

TABLE I
TEST ACCURACY ON MNIST WITH ADAMW AND ADADELTA

Adadelta AdamW
Dense matrix 98.41% 96.35%

Monarch (learn L,R) 96.26% 92.92%
Proposed (learn P2, L,R) 96.12% 97.49%
Proposed (learn L,R, P0) 96.39% 97.00%

Proposed (learn P2, L,R, P0) 96.38% 96.08%
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Fig. 3. Test loss on MNIST dataset over running time of the training stage for
a Perceptron with a hidden layer made of a dense matrix (615k parameters),
a Monarch factorization (45k parameters), or our factorization (training: 659k
parameters, inference: 45k parameters). Each point represents one epoch.

Table I shows the test accuracy of each model after training.
While the accuracy of the Monarch model with fixed permu-
tation (96.26%) drops by more than two points compared to
the MLP (98.41%), learning one permutation achieves a better
performance (97.49%), only one point below the MLP. Also,
our model is less sensitive to the choice of the optimizer. As in
the factorization experiment, our model performs better when
only one permutation is learned. Figure 3 presents the test loss
over running time. While our code is not fully optimized, our
model has similar performance as the original Monarch one
at time t = 1 when the loss of the latter plateaus, even if each
epoch takes more time for our model. A limited computational
overhead can further be used by our approach to improve
significantly the loss close to the MLP performance. This
is of particular interest at inference time where space and
time complexities are proportional to the number of learned
parameters in this layer, which decreases from N2 = 614, 656
for the MLP to 2N

3
2 + N = 44, 688 for our approach and

2N
3
2 = 43, 904 for the original Monarch model.

V. CONCLUSIONS AND PERSPECTIVES

We have extended the Monarch model to improve its
expressivity, by learning some permutations via an original
STE principle. We have designed an algorithm to estimate
such a factorization and have also shown how to learn it as
a layer in a neural network in an end-to-end procedure. The
proposed experiments have demonstrated the efficiency of the
approach while keeping a limited computational overhead.

Our study also illustrates the challenges of learning per-
mutations and highlights the limits of the approach. The
estimated permutations are not necessarily optimal, and higher
performance could be achieved by improving the optimiza-
tion procedure. Learning multiple permutations simultaneously
proves to be even more difficult. Also, due to the use of
matrices Xi, the training procedure has quadratic complexity
compared to the sub-quadratic one when permutations are
fixed. Eventually, monarch models with orders higher than 2
require further investigation.



REFERENCES

[1] L. Le Magoarou and R. Gribonval, “Flexible multilayer sparse ap-
proximations of matrices and applications,” IEEE J. Sel. Topics Signal
Process., vol. 10, no. 4, pp. 688–700, 2016.

[2] Q.-T. Le and R. Gribonval, “Structured Support Exploration For Mul-
tilayer Sparse Matrix Factorization,” in Proc. Int. Conf. Acoust. Speech
Signal Process., Jun. 2021.

[3] Y. Li, H. Yang, E. Martin, K. L. Ho, and L. Ying, “Butterfly factoriza-
tion,” Multiscale Model. Simul., vol. 13, pp. 714–732, 2015.

[4] T. Dao, A. Gu, M. Eichhorn, A. Rudra, and C. Re, “Learning fast
algorithms for linear transforms using butterfly factorizations,” in Proc.
Int. Conf. Mach. Learn., Jun. 2019.

[5] T. Dao, N. Sohoni, A. Gu, M. Eichhorn, A. Blonder, M. Leszczynski,
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